Characterization and expression analysis of AGAMOUS-like, SEEDSTICK-like, and SEPALLATA-like MADS-box genes in peach (Prunus persica) fruit.
نویسندگان
چکیده
MADS-box genes encode transcriptional regulators that are critical for flowering, flower organogenesis and plant development. Although there are extensive reports on genes involved in flower organogenesis in model and economically important plant species, there are few reports on MADS-box genes in woody plants. In this study, we have cloned and characterized AGAMOUS (AG), SEEDSTICK (STK) and SEPALLATA (SEP) homologs from peach tree (Prunus persica L. Batsch) and studied their expression patterns in different tissues as well as in fruit pericarp during pit hardening. AG- STK- and SEP-like homologs, representative of the C-, D-, E-like MADS-box gene lineages, respectively, play key roles in stamen, carpel, ovule and fruit development in Arabidopsis thaliana. Sequence similarities, phylogenetic analysis and structural characteristics were used to provide classification of the isolated genes in type C (PPERAG), type D (PPERSTK) and type E (PPERSEP1, PPERSEP3, PPERFB9) organ identity genes. Expression patterns were determined and in combination with phylogenetic data provided useful indications on the function of these genes. These data suggest the involvement of MADS-box genes in peach flower and fruit development and provide further evidence for the role of these genes in woody perennial trees that is compatible with their function in model plant species.
منابع مشابه
Characterization and expression analysis of FRUITFULL- and SHATTERPROOF-like genes from peach (Prunus persica) and their role in split-pit formation.
The fruit canning industry processes large quantities of the clingstone varieties of peach (Prunus persica L. Batch). The occurrence of split-pit formation--the opening of the pit and sometimes splitting of the fruit--causes deterioration of canned fruit quality. The frequency of split-pit formation is influenced by genetic and environmental factors. To increase understanding of the molecular m...
متن کاملThe study of a SPATULA-like bHLH transcription factor expressed during peach (Prunus persica) fruit development.
Extensive studies on the dry fruits of the model plant arabidopsis (Arabidopsis thaliana) have revealed various gene regulators of the development and dehiscence of the siliques. Peach pericarp is analogous to the valve tissues of the arabidopsis siliques. The stone (otherwise called pit) in drupes is formed through lignification of the fruit endocarp. The lignified endocarp in peach can be sus...
متن کاملExpressional regulation of PpDAM5 and PpDAM6, peach (Prunus persica) dormancy-associated MADS-box genes, by low temperature and dormancy-breaking reagent treatment
The present study investigated the expressional regulation of PpDAM5 and PpDAM6, two of the six peach (Prunus persica) dormancy-associated MADS-box genes, in relation to lateral bud endodormancy. PpDAM5 and PpDAM6 were originally identified as homologues of Arabidopsis SHORT VEGETATIVE PHASE/AGAMOUS-LIKE 24 identified in the EVERGROWING locus of peach. Furthermore, PpDAM5 and PpDAM6 have recent...
متن کاملCharacterization of an AGAMOUS-like MADS Box Protein, a Probable Constituent of Flowering and Fruit Ripening Regulatory System in Banana
The MADS-box family of genes has been shown to play a significant role in the development of reproductive organs, including dry and fleshy fruits. In this study, the molecular properties of an AGAMOUS like MADS box transcription factor in banana cultivar Giant governor (Musa sp, AAA group, subgroup Cavendish) has been elucidated. We have detected a CArG-box sequence binding AGAMOUS MADS-box pro...
متن کاملThe petunia AGL6 gene has a SEPALLATA-like function in floral patterning.
SEPALLATA (SEP) MADS-box genes are required for the regulation of floral meristem determinacy and the specification of sepals, petals, stamens, carpels and ovules, specifically in angiosperms. The SEP subfamily is closely related to the AGAMOUS LIKE6 (AGL6) and SQUAMOSA (SQUA) subfamilies. So far, of these three groups only AGL6-like genes have been found in extant gymnosperms. AGL6 genes are m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology and biochemistry : PPB
دوره 47 8 شماره
صفحات -
تاریخ انتشار 2009